Correcting Misconceptions about Synaesthesia


In the annals of cognitive neuroscience there are examples of fantastic memory abilities (e.g., Luria, 1968) that befuddle the vast majority of us with normal mnemonic skills. Although such feats have yet to be demonstrated in other species, extraordinary memory may not be unique to humans. One possible example comes from a study by Inoue and Matsuzawa (2007), which showed that following extensive training, a chimpanzee, Ayumu, displayed superior working memory than human volunteers. Recently, Humphrey (2012) hypothesized that Ayumu outperformed the human participants because he had synaesthesia, a condition in which a stimulus (an inducer) will involuntarily elicit an atypical ancillary experience (a concurrent) (e.g., graphemes eliciting color photisms) (Ward, 2013). Specifically, Humphrey posits that Ayumu spontaneously developed grapheme-colour synaesthesia through ``cross-cortical leakage'' (p. 354) between the parietal cortex, which may support the storage of overlearned sequences, and adjacent colour-coding regions, during working memory training. Humphrey speculates that the synaesthetic associations elicited colour after-images during training with numerals, and, in turn, facilitated superior performance. Here we challenge this hypothesis and argue that it makes a number of assumptions that are not supported by current research.

Neurobiology of Learning and Memory